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Many continuum theories for granular flow produce an equation of motion for 
the fluctuating kinetic energy density ("granular temperature") that accounts for 
the energy lost in inelastic collisions. Apart from the presence of an extra dis- 
sipative term, this equation is very similar in form to the usual temperature 
equation in hydrodynamics. It is shown how a lattice-kinetic model based on 
the Bhatnagar-Gross-Krook (BGK) equation that was previously derived for a 
miscible two-component fluid may be modified to model the continuum equa- 
tions for granular flow. This is done by noting that the variable corresponding 
to the concentration of one species follows an equation that is essentially 
analogous to the granular temperature equation. A simulation of an unforced 
granular fluid using the modified model reproduces the phenomenon of "cluster- 
ing instability," namely the spontaneous agglomeration of particles into dense 
clusters, which occurs generically in all granular flows. The success of the 
continuum theory in capturing the gross features of this basic phenomenon is 
discussed. Some shear flow simulations are also presented. 

KEY WORDS: Lattice gas methods; lattice-BGK methods; rapid granular 
flows; kinetic theory; fluid mechanics. 

1. I N T R O D U C T I O N  

The  numer i ca l  so lu t ion  o f  par t ia l  differential  e q u a t i o n s  us ing  m e t h o d s  based 

on  the l a t t i c e - B h a t n a g a r - G r o s s - K r o o k  ( B G K  ~}) mode l s  t26~ offers a n u m -  

ber  o f  advan t ages  o v e r  c o n v e n t i o n a l  c o m p u t a t i o n a l  methods .  These  in- 

c lude  stable,  efficient, and  h ighly  para l le l izab le  a lgor i thms ,  and  the ease 
wi th  which  va r ious  rheo log ica l  mode l s  and  c o m p l e x  b o u n d a r y  cond i t i ons  

can  be i nco rpo ra t ed .  S o m e  of  these advan tages ,  such as stabil i ty and 
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parallelizability, are inherited from the lattice gas automata (LGA) 
models t61 first proposed for hydrodynamics in refs. 5 and 8, while others, 
such as noise-free dynamics, Galilean invariance, and a velocity-independ- 
ent pressure, form the main thrusts of the LBGK models. These models 
are extremely versatile and can be applied to a variety of hydrodynamic 
phenomena including reaction-diffusion, phase transitions, magnetohydro- 
dynamics, and multiphase flows. ~2sl 

It is shown in this paper how an LBGK model can easily be adapted 
to solve continuum equations of motion for granular "fluids". The notion 
of a granular 'fluid' arises when a system of macroscopic grains, such as 
sand or coal particles, are subject to such rapid deformation rates that the 
contacts between individual grains do not endure and their motion is con- 
tinuously randomized by frequent collisions. The behavior in this case is 
analogous to that of a classical fluid, with the difference that the collisions 
are inelastic. It is emphasized, however, that despite the analogy, granular 
fluids are rheologically very different from classical fluids. A most signifi- 
cant difference is the tendency of granular systems to form dense clusters 
of particles of low internal kinetic energy within a dilute ambient of 
energetic particles. These clusters have been observed in both externally 
driven and undriven systems (i.e., systems that are left to decay from initial 
energetic states). For example, anisotropic clusters are always found in 
sheared systems whose collisions are very inelastic. 131"14~ Dense clusters 
can also be created spontaneously in an unforced and initially uniform 
system as its energy is dissipated in inelastic collisions. ~1t'~~176 
Clustering formation has also been observed in chute flows, ~24"3t convec- 
tion cells, 1131 and fluidized beds and thus appear to be a generic feature of 
all granular flows. 

Granular fluids have often been described constitutively on the basis of 
the classical kinetic theory of gases, and many theories of granular 
flow~23. 12. 17. 15, 19, 181 produce continuum equations which include one for 
the kinetic energy density ("granular temperature") that accounts for the 
energy lost in inelastic collisions, in addition to the usual equations for the 
mass and momentum densities. These equations are very similar to those 
for elastic particles, differing only in the presence of an inelastic term in the 
kinetic energy equation. The important issue of how well they capture the 
basic phenomenology of granular flows has hitherto been addressed only in 
an indirect way, for example, by comparing the theoretical constitutive 
relation (i.e., the relationship between the stress and the strain rate) to data 
obtained in molecular dynamics simulations ~2~ or by performing stability 
analyses of simple flow configurations. Although much has been learnt 
from these comparisons and analyses, including the discovery that the 
stresses in the flow deviate significantly from their theoretical values in the 
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presence of "inelastic microstructure" and that typical flow configurations 
governed by the continuum equations are unstable with respect to density 
fluctuationsClO, 29. 301 and typical length scales are deducible which charac- 
terize the distance between clusters, ~~ it is still largely unclear whether 
many of the peculiar features of granular flows are captured at all by these 
equations. The neglect of higher order correlations among the particles in 
the derivation of the equations must already imply that they will not be 
faithful to the actual dynamics in dense regimes--and large density 
inhomogeneities are indeed commonplace in granular systems. Other 
features peculiar to granular systems that have been observed include 
anisotropic clustering, hysteresis effects, generalized phase transitions, non- 
trivial transients, and oscillationsJ 31) A direct numerical study of the con- 
tinuum equations will therefore not only provide insights into the nature of 
these effects, but also expose the specific aspects of the actual granular flow 
not captured by the equations. 

The rest of the paper is organized as follows: After a very brief review 
of the basic LBGK model, we show how it can be modified to simulate the 
dilute-limit form of the continuum equations for two-dimensional granular 
flow derived by Jenkins and Richman 1~6) (henceforth refered to as the JR 
equations). Then we compute some numerical solutions of these equations 
for both a freely decaying system and a sheared system. The solutions are 
compared to results obtained from the corresponding molecular dynamics 
simulations. Finally, some comments on the ability of the JR equations to 
capture the various phenomena in granular flows are given. 

2. LBGK M O D E L  FOR G R A N U L A R  FLOW 

In the prototypical LBGK model, the following discrete analog of the 
BGK equation, 

Np,(X+Cpi, t+ 1)=  Np,(X, t)-co[Npi(X, t)-N~i(x, t)] (1) 

is solved on a regular lattice on which the set of particle densities Npi(X, t) 
are distributed. Here Npi is the average density of particles with velocity epg 
(the indices p and i are explained below), t is the time, x is the position 
vector of a node on the lattice, and co is the relaxation parameter, which 
can be freely adjusted between 0 and 2. A generic choice for the equilibrium 
population N~,;(x, t) is 

N pi = tpp I 1 +--c-~--~ +-2~c~ u~up / Cpi~Cpip~ ~P) I (2) 
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Here 0c and fl are indices for the Cartesian components of the particle 
velocity (Greek letters shall henceforth denote the Cartesian components of 
a vector). The hydrodynamic velocity and density are u, and p, respec- 
tively. The index p is equal to the square of the modulus of the particle 
velocity cpi, and has been used to distinguish between velocities having dif- 
ferent moduli. The index i denotes the different velocities in the same speed 
class p. The constant cs is proportional to a weighted average of the cpi~ 
and is identified as the speed of sound in the model. Finally, tp is a weight- 
ing factor, which depends on p and which is adjusted to obtain isotropic 
fourth-order tensor products of Cp~, and to ensure Galilean invariance of 
the dynamics. The choice (2) for the equilibrium population, when used 
together with (1), can be shown to lead to macrodynamic equations which, 
when truncated after the second order in u~, are similar to the Navier- 
Stokes equations, c27~ 

An LBGK model for granular fluids can be adapted from a previously 
derived model for miscible fluids 128~ by noting that in a two-species mixture 
the equation of motion for the concentration of one species is analogous 
to the equation for the granular temperature when a source and a sink of 
concentration are added. The source and sink correspond to the viscous 
heating and inelastic dissipation terms, respectively, in the latter equation, 
the dilute-limit form of which in the JR theory for a system of rigid disks 
of diameter a whose collisions are characterized by a constant restitution 
coefficient ~ is given by 

8,(pT) + a~(pu~ T) 

1 T r l ) 2 p _ P 2 ( l _ ~ 2 ) T  2 = Op(X8 p T) -- pTOpvp + ~ ~l I1 (3) 

where T is the granular temperature and p is the local solid fraction, 
i.e., fraction of volume of fluid occupied by the particles, which, apart 
for a multiplicative constant, is essentially the mass density. The thermal 
diffusivity X and viscosity r /are given by 

4 X = r /=  ~- o" x / ~  (4) 

The dissipative term due to the inelasticity appears as the last term on the 
r.h.s of (3), and the viscous heating function is 

Tr D;p = ( O~v p)- + ( O~,v pO pv~) -- ( 8~,v~,)- (5) 
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Following the development in ref. 28, we define the mass density p by 

p(x, t ) =  ~ U,~-(x, t) 
p , i  

and the hydrodynamic velocity u~ by 

(6) 

We introduce the quantity 

pus = ~. Npicp,~ (7) 
p,i  

Pl = )". NIpi (8) 
p,i  

which may be thought of as the mass density of a component species whose 
particle density is N~p~. The dependence of Npi, N~p~, us, and p~ on x and 
t is implied for notational convenience and will be implied henceforth. The 
variable corresponding to the granular temperature is defined as 

T= pl (9) 
P 

where it is noted that, unlike the case of a true concentration variable, no 
constraint will be placed on the magnitude of p~ relative to p and thus T 
may take all values larger than zero. 

The evolution equation for Npi is taken to be (I) with a forcing term 
added to its r.h.s, to recover the dependence of the pressure on T, i.e., 

Npi(x + cp,, t +  1)=Npi(x, t)--co[Nm-(x, t ) -N~i (x ,  t)] 

tp 
+-5 [pep,~O~T+ (T--c~) cp,~O~p] (10) 

Cs 

The various derivatives in the forcing term depend only on the local state 
of the fluid at time t and can be computed using appropriate finite- 
difference approximations. The evolution equation for N~pi is 

N l p i ( X  ~ "1- cpior , t + 1 ) 

= N l p i ( X a ,  t)--col[Nlpi(X~, t)--N~pj(x~, t)] 

+ t , ( ~ r / T r / ~  -~ P 2 ( l ~  --g2) T~) (11) 

where q has already been defined in (4), N]pi= TN~, and a relaxation 
parameter co I possibly different from co may be used. On the macroscopic 
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scale, the dynamics of Nip t and Np,. reproduce the dynamics of the granular 
temperature equation and those of the momentum and continuity equa- 
tions, respectively. Thus, by coupling Nlpi to Np+ via u=, a convective- 
diffusive effect on T is produced. The last two terms on the r.h.s of (11) 
correspond to a source and sink of temperature and, as in the case of the 
forcing term in (10), may be computed using finite difference approxima- 
tions. To obtain the requisite dependence of 1/ and X on T [cf. (4)], the 
values of co and o9~ are coupled to the local value of T as follows: 

c 2 
4rf (12) 

c~ 2 1 =--~-  a v/-T (13) 

Since 09 and co I are now regarded as functions of T, the only adjustable 
external parameters of this LBGK model are ~ and tr, where 0 < ~ < 1, and 
tr should be given in units of the lattice constant. 

The macrodynamical equations for this model can be obtained by 
means of a Chapman-Enskog procedure, the complete details of which 
can be found in refs. 25 and 28. It can be shown finally that the macro- 
dynamical equations for this model are 

Otp+O=(pu=)=O ( 1 4 )  

O,(pu=)+Op(pu=up)= -O=(pT)+OpE@p(pu=)+tlO=(pup) ] (15) 

1 13 2 - -  p2~r, 
0,( p T) + 0=( pu= T) = O=(XpO = T) + ~ r I Tr - (16) 

q 

Except for the absence in (16) of the term pTO=v= (expansion work done 
by pressure), (12)-(16) correspond exactly to the JR equations. The key 
points of the Chapman-Enskog procedure relevant to the derivation of 
(14)-(16) are given in the appendix. 

3. N U M E R I C A L  RESULTS 

The model described in the previous section is now used to compute 
solutions of the JR equations for the following flow configurations: an 
unforced granular gas in a periodic square domain whose temperature and 
density are initially homogeneous, and a Couette flow in a square domain 
which is bounded by two walls moving in opposite directions and which is 
periodic in the streamwise direction. The model is implemented on a 
64 x 64 D2Q9 lattice with one rest and eight moving particles (cf. ref. 26 for 
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explanation of the D2Q9 lattice structure). In both configurations, the 
initial temperature field is uniform, while a 1% random perturbation is 
added to the initial density field, whose average is uniform, in order to 
trigger the nonlinear mechanism that leads to clustering. In the Couette 
flow, a uniform shear is also superposed and a no-slip condition is applied 
at the walls. This condition is maintained by specularly reflecting particles 
off them and by constraining u~ to the value of the wall velocity when 
computing the equilibrium particle density N~, i at nodes lining the walls. 

The density and temperature fields for an unforced flow with ~ = 0.6 
and a = 0.05 (where the lattice spacing is unity) at time t = 100 are shown 
in Figs. 1 and 2, respectively. These figures indicate that regions of higher 
density, corresponding to clusters, have lower temperatures, while regions 
of lower density have higher temperatures. The appearance of a charac- 
teristic length scale in the density field is also evident in its Fourier trans- 
form, which shows an extremely well-defined peak at a single wavenumber. 
Solutions for other values of ~ show that this length scale decreases with 
increasing ~, in conformity with a theory for cluster creation based on 
the JR equations proposed in ref. 11. The fluctuations in the density and 

Fig. 1. Contour plot of the mass density field at t = 300 for a two-dimensional unforced flow 
governed by the JR equations with ~ = 0.6 and a = 0.05. The solution for the flow is computed 
using the LBGK model as presented in the text. The vertical axis corresponds to the local 
solid fraction (or dimensionless density) p in arbitrary units. 

822/81/I-2-7 
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temperature fields can be as large as 20% of the corresponding average 
values. However, the dynamics for t>> 100 shows that the density field 
saturates at the approximately same level of fluctuations as shown in Fig. 1. 
In contrast, molecular dynamics simulations of large unforced systems with 
the same value of ~ have shown that the density in the clusters could grow 
to several times the average density, c1~ It thus appears that the JR equa- 
tions, while faithful to the dynamics of the flow in the initial cluster-form- 
ing stage, do not capture its long-time dynamics. Moreover, the results for 
Couette flow presented below indicate that the anisotropic structure of the 
density inhomogeneities (i.e., the clusters) is not reproduced by these equa- 
tions. This anisotropic structure has been observed in numerical simula- 
tions of periodic shear flows of frictionless disks and spheres ("Lees- 
Edwards" systems) and wall-bounded shear flows of both frictional and 
frictionless disks, t32) These simulations suggest that the structure of the 
density field in the interior of the flow is determined by the rotating and 
stretching effects of the shear in conjunction with a complex cluster-cluster 
scattering mechanism (explained in ref. 31) and is independent of the 
precise nature of the shearing boundary condition. The presence of rigid 

Fig. 2. Contour plot of the corresponding granular temperature field for the same unforced 
flow as shown in Fig. 1. The initial value of the granular temperature is set to unity. 
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moving  walls addi t ional ly  imposes a flow-scale inhomogenei ty  on the 
smaller  scale an iso t ropic  structure of  the clusters, but  the an i so t ropy  
remains nonetheless. 

The densi ty field for a Couet te  flow with ~ =  0.6, a = 0.05, and  wall 
velocity U =  _0.1  (where the average part icle  speed cs is 1/x/~) at t = 100 
is shown in Fig. 4. Again  a character is t ic  length scale can be seen, but  the 
densi ty inhomogenei t ies  are isotropic,  in cont ras t  to the results of  
molecular  dynamics  s imulat ions  t32~ (cf. Fig. 3), which show that  dense 
clusters are created in the 45 deg direction,  then are ro ta ted  by the shear 
before being b roken  up by their  mutua l  interact ions,  and  thus persist  in the 

Fig. 3. The particle configuration plot for a two-dimensional simple shear flow of rigid 
inelastic disks whose restitution coefficient ~ is equal to 0.6. Superposed on the plot is a vector 
plot of the velocity field. The flow as shown is in a statistically steady state and is computed 
using a molecular dynamics program. The number of disks in the system is 2 x 105 and the 
volume fraction of the disks is 0.05. 
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flow only at angles of  incl inat ion between 0 and 45 deg to the horizontal ,  
with the major i ty  inclined at  angles close to 45 deg. 1311 It is also known that  
the second tensor  moment  of  the velocity fluctuations is anisot ropic  in a 
shear flow (i.e., that  the normal  kinetic stresses are different), but  the 
JR theory assumes a vanishing normal  stress difference. The solut ion for a 
t ransient  per iod near  t = 0  shows that  the densi ty fluctuations grow 
slightly, but  the solut ion after long times indicates that  both  the density 
and tempera ture  fluctuations decay and are eventual ly completely d a m p e d  
out. The state that  is reached finally is a s teady uniform shear flow with no 
inhomogenei t ies  in either the density or the tempera ture  field. Other  solu- 
tions that  were computed  for different pa ramete r  values and from more  
s t rongly per turbed  initial states behave in the same way after long times as 
well. It is not  clear at this point  whether  the absence of  clustering in the 

Fig. 4. Contour plot of the density field at t = 100 for a two-dimensional Couette flow 
governed by the JR equations with E=0.6 and a=0.05. The horizontal direction is the 
streamwise direction and the shade code for the plot is lighter shades for higher densities 
and darker shades for lower densities. Notice that the density inhomogeneities do not appear 
to lie in any preferred direction, in contrast to the molecular dynamics result shown in Fig. 3, 
which shows that the actual inhomogeneities are aligned typically at 45 deg from the horizontal. 
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long-time dynamics of the flow is an inherent property of the JR equations 
(i.e., that their shear flow solution is stable to finite-amplitude perturba- 
tions) or is due to an overdamping mechanism in the LBGK model itself. 
The LBGK model may be unsuitable for highly compressible flows, since 
the macrodynamical equations in the form shown in (14)-(16) are valid 
only in the limit of small Knudsen and small Mach numbers. It remains to 
be seen in future work whether the above findings can be borne out by 
simulations of the JR equations using other methods. 

4. C O N C L U S I O N  

In this paper, we have constructed an LBGK model for a set of con- 
tinuum equations for dilute two-dimensional granular flow and shown that 
they reproduce the phenomenon of clustering in unforced flows. However, 
they fail to reproduce the anisotropic cluster structures that are observed 
in molecular dynamics simulations of shear flows, and their long-time solu- 
tions for these flows are homogeneous, also in contrast to the molecular 
dynamics results. The choice of the LBGK method, as opposed to more 
conventional methods such as finite-difference schemes, is made mainly on 
the basis of its algorithmic simplicity and adaptability to different rheologi- 
cal models, and also the ease with which the transport coefficients can be 
tuned or coupled to the field variables. 

A P P E N D I X .  C H A P M A N - E N S K O G  E X P A N S I O N  OF THE LBGK 
E Q U A T I O N  

We first derive the macrodynamical equations for a miscible multi- 
component fluid modeled by the LBGK equation. Then we will show that 
by adding a suitable forcing term to (1) we may obtain an equation 
governing the dynamics of the concentration variable which is similar in 
form to the equation for the granular temperature. We first extend the 
definitions of the mass and momentum densities for a simple fluid to a 
mixture of fluids, t4~ Let N,., denote the average population of particles of 
the rth species with velocity Cp,~. The total mass density p is given by 

p =  ~. Nr , (X,  t) (A1) 
r.p,i 

while the mass density Pr of the rth species is 

P r = ~ Nrpi (A2) 
p,i 
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Note that the sum is not taken over r in (A2). Also, the space and time 
dependence of N~p~ in (A2) is implied, and will be implied henceforth in the 
analysis. The velocity u, in a mixture of fluids is defined as the total 
momentum of unit mass of fluid. That is, it is defined via the relation 

pu~= ~ N,.picpi~ (A3) 
r .p , i  

The additional hydrodynamic variables relevant to a mixture are those that 
describe the local composition of the fluid. These are the concentration cr 
of the rth species and are defined as 

P r  cr = - -  (A4) 
P 

In a mixture consisting of nonreacting species, the local concentration of 
each species changes through the mechanical mixing of the fluid and through 
mutual diffusion. From the definition (20), the Cr satisfy 

~cr= 1 (A5) 
r 

Hence for a mixture having a total of R species, there will be ( R - 1 )  
independent equations of motion for the cr. 

The generalization of (1) to a mixture of fluids is taken to be 

Nrpi(x~ + cpi~, t+  1) 

: N r p i ( X a ,  t) - -  ( . O r [ N r p i ( x c t  , t )  - N~pi(X ~, t)] (A6) 

where possibly different relaxation parameters Wr may be assigned to each 
species. The local equilibrium population N~p~ can be inferred from a 
generalization of the H-theorem for a mixture of fluids and is given by 

c I c Nrp i - crNpi (A7) 

with N~i given by (2). Equation (A7) may be taken to imply that the 
dynamics are attracted to separate equilibrium states corresponding to 
each component, but which are coupled via the velocity u~. 

The equations governing the large-scale dynamics of (A6), in which 
the local equilibrium distribution N~p i is taken to be given by (A7), will 
now be derived using a Chapman-Enskog expansion. Since similar expan- 
sions for the LGA and LBE have been used before (see, for example, refs. 
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6 and 7), we will only outline here the steps necessary to obtain expressions 
for the transport coefficients. We assume a weak disequilibrium expansion 

e 2 (2) ( A 8 )  g r p  i = N r p  i + eN~lpJ + e N r p  i + . . .  

where t is the appropriate Knudsen number for the flow. The space and 
time derivatives are expressed in terms of multiple-scale variables as 

a~=e0~ (A9) 

O, = e0tl + e20t2 (A10) 

Since mass and momentum are conserved, it follows from (A6) and (A8) 
that 

wrN(~ = 0, j > 0  (Al l )  
r,p,i 

r,) NIJ).e . =0 ,  j > 0  (A12) --r-" rpt -plc~ 
r,p,i 

Also implicit in the lattice-BGK model is that the nonequilibrium popula- 
tions ~r~y) j >  O, satisfy the constraints ~" rpi 

~, N~I = 0, j > 0  (AI3) 
r,p,i 

N~J!c =0,  j > 0  (A14) -'rpt --p~cz 
r .p , i  

~ N(:>.= 0, j > 0  (A15) - - r p t  
p,i 

where (A15) expresses the conservation of the mass density of each species. 
At(J):.. does not vanish in general, since there can be However, Zp, i-'rpi-p,~ 

transfer of momentum from the particles of one species to particles of a 
different species. 

By expanding N,pi in a Taylor series about x~ and t, and using (A9) 
and (A10), we obtain first- and second-order equations in e; we then take 
the zeroth and first moments of %i in these equations to obtain 

O,,p+O~(pu~)=O (A16) 

O,,(pu~) + 0pJ~p = 0 (A17) 

where it can be shown by using the fact that 

bp 
E tP E Cpi~CpiflCpiyCpi~=C4((~ff(~YO~-(~Jfl(~Ya-~r r  (A18) 
p i = l  
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that 

J~p = c~p~p + pu~up 

Using (All), (A12), (A16), and (A17), we also obtain 

(A19) 

O,,_p=O (A20) 

O,,pu:+Op ~ ( ' -~ lN~]cp i : cmp=O (A2I) 
r,p,  i k Z . /  

Equation (A20) implies that there is no diffusion of the total mass density, 
while (A21) accounts for the effect of viscous momentum fluxes. 

Following the development of the Chapman-Enskog expansion, /V-<~! - ' r p t  

will now be expressed in terms of derivatives of the macroscopic variables. 
Here we will also need equations corresponding to (A16) and (A17) in 
which the index r is not summed over. These are 

O,,pr+O~,(pru~,) =0 (A22) 

Ot,(p,.u~,)+c~O~,p,.+Op(prU~Up)= --COr~ IVCl>r �9 (A23) ' '  rpi ~ps~r 
p , i  

Note that Zp. +N~cp+: corresponds to the nonequilibrium mass flux of 
species r and does not vanish in general. To ~(u) this flux is given by 

1 
' '  rpl --ptc~ 

p , i  O) r 

[O,,(prU~) + C~,pr] + (9(U z) (A24) 

It is easy to show using (A17), (AI9), and the relation pr=pc.r that 
O,,(pcru~) = ~ 2 -c;crO~,p + O(u ). Hence 

2 

p , i  W r  

Using (A7), (A22), and (A23), we obtain finally 

N ( l ) -  - tp  [ - (.o r L \ c~ (A26) 

It is easy to check that the conditions (A13)-(A15) are satisfied by N ~) rpi" 
Substituting (A26) into (A21), we obtain finally 
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where we have defined the "equivalent" relaxation parameter w via the 
relation 

I = E G  (A28) 
CO r (Dr 

Equations (AI6), (AFT), (A20), and (A27), i.e. the dynamical equations 
from the two separated time scales I/e and I/e 2, will now be reconstituted 
to obtain the macrodynamical equations for the model. The equation of 
continuity is obtained from (A16) and (A20) by multiplying the former by 
e and the latter by e 2 and then adding the two equations; and the Navier- 
Stokes equation is obtained from (A17) and (A27) in the same manner. We 
obtain 

O,p + O~,(pu~) =O (A29) 

O,(pu~,)+ap(pu,,up)= -c~O~p+Op[vOa(pup)+(O~(pup)] (A30) 

where the coefficients of shear viscosity v and bulk viscosity ~ are given by 

=c~(2 1) (A31) 
v=~ 2 \(D-- 

We will now obtain the equation of motion for the concentration G. 
The equation corresponding to (A20) in which indices p and i are not 
summed over is 

(Dr (E N~l]Cpi~)=0 (A32) O'2P~--(--2--1)O~.p - 

which shows that there in general the species mass densities change on the 
diffusive time scale. Substituting (A25) into (A32), we obtain, correct to 
C0(u), the convective-diffusive equations for the mass density of each species 

O,(pc~) + O~(pCrU~) = O~(DrpO~,Cr) 

where the diffusivity is given by 

(A33) 

(' 2 _ 1) (A34) 

For a mixture of two species with P~=Pz and col =092, we find that 
D~ =D2=v.  This is not surprising, since the concentration variable is 
analogous to the temperature in the BGK approximation and the Prandtl 
number (ratio of viscosity to temperature diffusivity) of a gas that satisfies 
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the B G K  equat ion is unity. Also, notice that  since S ~ .Nt~cpi= does not  /..~p, t rpi 

vanish in general,  (A12) implies that  all but  one of  the o9r are freely 
adjustable.  Thus in pract ice one prescribes values for the equivalent  relaxa- 
t ion pa ramete r  o9 and ogr, r = I, 2 ..... R - 1 (where R is the to ta l  number  of  
species), and uses Eq. (A6) for Nrpi, r =  1, 2 ..... R - 1 ,  together  with an 
addi t ional  equat ion for the to ta l  popu la t ion  N,~=Z~,p,  iNrp~ [which  is 
exactly similar in form to (1) with the cor responding  Np~ given by (2)]  to 
compute  the evolut ion of  the dynamics.  

Equat ions  (12)-(16)  are ob ta ined  as a s t ra ight forward extension of  the 
above  model.  We consider  a two-componen t  fluid and define 

Pl T = c l  = - -  (A35) 
P 

The cont inui ty  equat ion (14) is derived in exactly the same way as (A29). 
It is easy to see that  the last term on the r.h.s, of  (10), when summed over 
p, produces  a term that  cancels the pressure term in (A29) and replaces it 
with -O=(pT) .  The last term on the r.h.s, of  (11), when summed over p, 
produces  an equat ion  for p~ given by 

at, p r - ( ~ - l ) O = ( ~ p , . N ~ t p ~ C p i = ) q - ( ~ T r / )  2 - p 2 ( 1  - ~2) T2'~ _ ~ / = 0  (A36) 

from which (16) follows with ~ equal  to Di  as given by (A34). 
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